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ABSTRACT

This report deals with the specification of the angular position
of objects by measurement of the angles of arrival of light beams; and
with the measurement uncertainties due to atmospheric turbulence. A
survey of the literature is presented showing two approaches to angle
of arrival, one for large aperture receivers and one for a single
small aperture or a pair of pinholes. Pertinent defining equations
are presented for both cases and values are calculated for arrival
angle mean square measured with a large aperture and correlation of
arrival angles for small apertures. A synonymity between the small
aperture correlation function and large aperture mean square angle of
arrival is presented and used to present further large aperture mean
square values. This provides a significant simplification in calcu-
lation and measurement capabilities. Fipally the regions of accuracy
are presented for the Rytov approximation which forms the basis for
the numeric calculations.
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I. INTRODUCTION

When optical methods are used to observe an object through the
atmosphere, the turbulence in the atmosphere may cause the apparent
position of the object to fluctuate. This motion is caused by turbu-
lence-induced fluctuations in the electromagnetic phase of the received
wave. The received rays appear to change direction, so that the term
angle of arrival fluctuations is used ito describe this phenomenon.
Knowledge of the angle of arrival fluctuations or its statistical
properties is obviously necessary for analysis of systems specifying
the accurate location of terrestrial or extraterrestrial object by
optical means. It is also conceivable that, since angle of arrival
fluctuations are induced by atmospheric turbulence, arrival angle
statistics could be used as a convenient tool for study of turbulence
characteristics.

The literature on angle of arrival is scattered and offers a wide
range of views, approaches, and restrictions. For example there are
two general approaches to arrival angle. The first considers the light
detected by one or several minute apertures where phase is linear and
amplitude is constant across the aperture. The quantities of interest
for this approach are the arrival angle variance and correlation
function, the mean being easily demonstrated to be zero. Alternatively
there is consideration given to a single large aperture where the phase
front is crinkled and the amplitude is not at all constant across the
aperture. Generally the literature considers only the arrival angle
variance for such a situation. For either approach the derivations
gased on the Rytov, the geometrical optics or other approximation may

e given.

It is desirable to be able to predict the angle of arrival
observed by both large and small aperture methods in terms of the propa-
gation range, receiver and aperture characteristics, wavelength, and
turbulence parameters; outer and inner scale and structure parameter.
Some cases have been considered, but most are valid only for restricted
ranges of the variables described earlier and all use several approxi-
mations.

The original object of this report was to examine the literature,
to categorize these different situations and approximations, and to
extend the results where feasible. This has been done. Basic extensions
involve the computation of arrival angle functions using an index
spectrum which accounts for the turbulence inner and outer scales.

In the process of performing these calculations, a synonymity
between a small aperture correlation function and large aperture variance
function was discovered. This synonymity provides great simplification
in the calculition and measurement of these two quantities. The
synonymity is presented and derived.



In the balance of the report there is first a general discussion
of angle of arrival in Chapter II. This is followed by analytic
expressions for angie of arrival statistical functions for first the
small aperture approach (Chapter I1II) and then the large aperture
approach (Chapter IV). Numerical results are presented in Chapter V
in graphical form for a wide variety of cases along with a discussion
of the Tlimits of applicability of the Rytov approximation. Chapter VI
deals with the synonymity of the large and small aperture approaches.
Finally, the summary appears in Chapter VII.

IT. GENERAL DISCUSSION OF ANGLE OF ARRIVAL

In this section we introduce in detail the various concepts and
quantities associated with the two major approaches to angle of
arrival. First the general measurement situation is considered. The
small and large aperture situations are discussed to the extent that
typical formulae are presented.

As generally used, the term angle of arrival is concerned with
light emitted from an object and detected by a receiver. Pragmatically
what is desired is a listing of the angular coordinates of the object
with respect to some fixed reference system. In simple minded terms
this can be obtained by imaging the object either with a lens (finite
aperture) or a pinhole camera (very small aperture) and taking a line
from the object through the center of the input aperture. The angular
coordinates of the line then define the direction of the object. If
there are no intervening refractive index fluctuations then the image
of a point object may be a diffraction limited spot with a well defined
center. The angular coordinates determined by the spot center can be
very precisely chcsen in such a case.

Complications arise because of random index fluctuations which
cause the image to move around and/or to blur, depending on the physical
details of the receiver. Random image motion is then interpreted as
random fluctuations in the observed angle of arrival. Further fluctu-
ations in the shape of the received image of a point object also cause
fluctuations in the "center of gravity" of the image and may be in-

terpreted as fluctuations of the angle of arrival. It is the statistical

description oV these random fluctuations in arrival angle caused by

refractive index fluctuations that form the basic subject of this report.

It might be noted that the arrival angles measured with an optical

instrument might, even in the absence of re‘ractive index fluctuations,
not be the true angular ccordinates of the object. For example, if
there were a refractive index gradient perpendicular to the light path,
the light rays would be bent causing an ancmolous indication of the
true angles. This effect causes the phenomenon of "iooming" and

causes the sun to be visible after it has in actuality dropped below
the horizon. Such effects will not be considered in the present report.
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There are various approaches to the measurement and prediction of
angle of arrival fluctuations. The measurements are generally cate-
gorized by the size of the aperture used for the receiver. Perhaps the
cleanest approach involves the use of a very small pinhole sized aperture,
as shown in Fig. 1. The pinhole is chosen sufficiently small so as to

y DIFFRACTION

PiNHOLE PATTERN )

e/ e
WAVEFRONT

Fig. 1. Definition of small aperture angle of arrival.

be smaller than the spatial extent of any amplitude variation, and so as
to contain only a flat wavefront. The displacement, d, of the center of
the diffraction pattern in a given direction, then, is related to the
angle of arrival, a, by the expression

(1) d = Ra

where R is the distance from pinhole to diffraction pattern. In this
situation, motion is caused only by phase fluctuations and not by
amplitude fluctuations of the incoming light.



As shown in Fig. 1, two angles of arrival are defined; the ele- i
vation angle o, and the azimuth angle, 8. One can consider various
statistical func%ions of these angles. The simplest are the variances,*
such as <(a-<a>)¢>. (The angular brackets indicate ensemble average.)
There are also the two point arrival angle correlation functions for
angles of arrival defined at two separate pinholes as shown in Fig. 2.
Two such correlation functions exist, differentiated by the relative
positions of the pinholes with respect to the direction of motion of
the spots, as shown in Fig. 2. These will be discussed in more detail
in the next section.

To calculate angle of arrival for a pinhole aperture the wave-
front tilt is determined using the optical distance, L, or the
equivalent electromagnetic phase shift, S = k L, along two rays through
the turbulent atmosphere from the source to opposite sides of the
receiver aperture. As shown in Fig. 3, we have for

= 113 ’-_(.Y_*'ﬂ)_'_‘_-_(ﬂ = .B_L =J_3_S_
(2) a = lim . 5y K 3y
n+0

The type of wave, i.e., plane, spherical, etc., will _determin2 the

functional form of L. The arrival angle variance <a?> is then expressed :
as the ensemble average of the square of the average product of two

optical phases.

2

2. _ 1. 3
(2a) <a"> k2 13, <S(y~|) S(y2)> i
172
(2b) =1 __jﬁi__ B_(y,-ys) a
k2 83yq3Y, S YN :
N2 {.
-] ;\2 3°
(2c) = 7 sy Pslyay) y i
2k 172 -
Yo i
*The terms angle of arrival variance and mean square value will be used b

interchangeably. They are ideniical since the mean is chosen to be
zero. Similarily, the terms covariance and correlation function will
be used interchangeably.

b2

=i b3
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Fig. 2. Definition of small aperture angle of arrival
correlation functions.
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TURBULENCE
——
INCOMING DEGRADED
WAVEFRONTS WAVEFRONT

Fig. 3. Example of a small aperture angle of
arrival calculation. :

Equation (2a) uses the standard form for the phase correlation function
B, (¥,-¥7) = <S(y;) S(y,)>

and the associated structure function,
DS(YZ'Y]) =2 [BS(O) - BS(YZ'Y])]

written for a homogeneous atmosphere. Equations similar to Eq. (2c) :
will be used subsequently in the report.

Various techniques appear in the literature for the extensions L
and evaluation of Eq. (2c). They use expressions for the phase
correlation or structure functions based on either the eikonal equation
approach{1,2,3] of ray optics, or based on the Rytov approximation[4,5,6,7] 1
(which reduces to the eikonal equation approach for short ranges). They 7
also use a variety of correlation functions, structure functions or
spatial spectra to represent the atmosphere.

6
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An apparatus using pinhole apertures has one possible drawback as
a practical device for angular coordinate measurement. That is the
high source signal level required because of the small receiver aperture
size. However it does provide a measure of arrival angle variance and
correlation functions and, therefore, could be useful under controlled
conditions where the source is available. Further the associated ana-
lytical calculations of the statistical quantities are simplified by
being amplitude independent.

The other approach to arrival angle measurement employs a large
aperture receiver with a lens to image the object as shown in Fig. 4.

ARRIVAL ANGLE
APERTURE VARIATION

Fig. 4. Definition of large aperture angle of arrival.

This situation is more practical because of its light-gathering ability
and subsequent increased sensitivity. However, it is more difficult

to work with conceptually because of random spatial wavefront and
amplitude "luctuations superimposed upon the no-turbulence fields.
Thus, while the wavefront normal provided a reasonable indication of
arrival angle for a pinhole aperture, there is very apt to be no unique
wavefront normal for a large aperture. One can instead use the focused
image, but amplitude and phase fluctuations about the mean wavefront

of the incoming light cause motion of the image and deterioration of
its shape, thereby increasing measurement uncertainty.

7



The quantity generally calculated for the large aperture approach
is the arrival angle variance. To do this the instantaneous arrival
angle is defined using some sort of optimization technique involving
either fitting a smooth wavefront to the input fields[8,9] or defining
the arrival angle to be that which has the maximum power.[10] These
calculations are generally more complex than pinhole aperture calculations
because of amplitude fluctuations over the input aperture, and because of
the multiple integrations required.

As an indication of the approach to arrival angle calculations
for large aperture situations, consider the following approximate
calculatio from Hufnagel.[8] Assume that to a good degree of
approximation the wavefront at any instant can be described by a plane
which mitches the actual wavefront at four points, the intersection of
the transverse coordinate axis with the aperture edge. Then the phase
deviation along the x axis will be

8(2, 0) - o(-9, 0,

the linear variation of the wavefront from the x axis will be
[o(3, 0) - ¢(-3, 0)/k

and the angle of tilt in the x direction will be

(3a) a, = [0(F. 0) - s(-3, 0)1/kD.

Assuming that o has a zero mean, then its variance will be

(3b) @ B> = (63, 0) - o-5, 0)2/k% 07
(3c) = D (D)/k% D?

(3d) = 6.88(0/r,)*/3/k? 2

(3e) = 6.88/k% r %3 p1/3

where the phase structure function, Ds(p), has been approximated by

8
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D, (p) = 6.88(o/ )/

where 0ty is Fried's transverse coherence length given by

r, = (6.88/2.91 k2L c§)3/5.

There are also other approaches to angle of arrival. One is
an examination of arrival angle of light from a line source,[11,12]
representing an extension of the small aperture approach. Another is
a calculation of arrival angle variance using the Fokker-Plank
equation[13] which represents a unique approach. These techniques
will not be mentioned further. A few experimental measurements have
been described by Coulman.[14,15]

To summarize, this section has presented a general discussion of
various aspects of angle of arrival work, indicating the sources of

uncertainty considered, and discussion of the two models for approaching
the subject.

IIT.  SMALL APERTURE ANGLE OF ARRIVAL CALCULATIONS

In this section the exact expression for the small aperture
angle of arrival statistical quantities are derived and examined.
They include two types of correlation functions and the mean square
angle of arrival. The formalism to be presented follows closely that
presented by Tatarski [5, section 40]*. As mentioned earlier, the
small aperture technique assumes that the aperture is small enough
that the aperture size has no effect on the angle of arrival indication.
Thus, the phase difference across the aperture is assumed linear and
the instantaneous amplitude is assumed to be independent of position
in the aperture. Under these conditions the wavefront normal will
uniquely define the angle of arrival at any instant of time.

Since the aperture size will not affect the final result, the
optical path lengths to pairs of points are considered and the aperture
sizes shrink to zero. The situation is shown in Fig. 5a. Using the
definition in Eq. (2) we have

*For equations taken from [5], the section number and equation number
will be given in parentheses.
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Fig. 5. Gecumetry used to calculate small aperture
arrival angle correlation functions.



(43) (!'I &
(4b) (!2 -
where
S] =
52 =
S3 =
S4 =

These points are

[L(2,0,0) - L(2,0:n;)]

limit
N9
ﬂ]"o

51 - S,

limit
ﬂ]'*o

[L(Z-O.Y-|-n2/2) - L(zioiy] + T\2/2)]

Timit .
>0 2

phase at the point (z,0,0)

phase at the point (z,O,n])

phase at the point (z,O,yl-nz/Q)
phase.at the point (z,O,y]+n2/§).

shown in Fig. 5a.

The elevation'angle of arrival correlation is defined as

(5a) Ba(y'l) = <a(z,0,0) a(Z,O,y-I)>.

To simplify we substitute Eq. (4a) and Eq. (4b) into Eq. (5a)

giving

N



<(Sy - S,)(S3 - S4)> ,

(5b) Ba(y) = limit k2 ra
where m = no.
Using the identity that ‘
a 2 2 2
-(s, - 5520

Eq%agion (5b) can be written in terms of the phase structure function,
0_(p).
s

(54) B,(y;) = Timit —f— [B_(yy#nq) + O (yq-ny) = 20 (¥)1.
o 2

Expanding Ds (y] + n]) in a Taylor series we have
(e) D(y; £ ny) = D(yy) £ ny DL(yy) + 1/2 n? Dl(y;) + -+

which, when substituted into Eq. (5d), yields [5, (40.35)] written
as Eq. (5f)

(5¢) B(¥;) = ;17 D! (y,) *

where Ds(y) is the phase structure function and the primes denote
At "
derivatives with respect to the argument.

The azimuth angle of arrival, 8, shown in Fig. (5b) is calculated ‘e
in a similar manner. Using the points shown in Fig. (5b) we have )
(S - S,) i
(6a) 8y = limit — —%
%
C]"O
12



(S, - S,)
0
where
§ = phase at the point (z, - 225 0)

S, = phase at the point (z, + gy/22 0)

S3 = phase at the point (z, - 2929 y])

Sy = phase at the point (z, + 222 y])
and with &1 = %
(6¢) B, (y;) = Timit s <(S, = $;)(S, - S)>.

£y0 k™zy

Using the identity in Eq. (5c) we again have the correlation in terms
of the phase structure function. The only difference is that

(6d) <(S-| - 54)2> = D, (Jz;% + y%)

Then Eq. (6¢) becomes

(6e) BB(y]) = limit ;?li__'[ns (J‘yf + ;2) - Ds(y])].

5190 %

Since the limit will force ¢ to be arbitrarily small the square root
in Eq. (6e) can be expanded in a power series.

2
2. 2| . A
(6f) (.Y]"'C]) = .ylfﬁl_‘*.“

13



Using the Taylor's series expansion in Eq. (5e) we have

2
[_ 4
(6g) Ds(y12+c12) =Ds(y1)+§;7 De(yq) + -~

When substituted into Eq. (6e) the resulting expression is [5,(40.38)],
written as Eq. (6h)

Dily,)
_1 s\
(6h) BB(.Y]) = —2k2“ 'y]

Comparing Eqs. (5f) and (6h) we see that the interpair displace-
ment with respect to the pair separation determines the final form for
Bo(y1) and Bglyq). To calculate B (yy) the disglacement was parallel
to the separation. On the other hand, the displacement was transverse
to the separation when Bg(yy) was calculated.

The dependence on the interpair displacement when the interpair
direction is neither parallel or perpendicular to the interpoint
direction has been found explicitly by Strobehn and Clifford.[7] For
sample points oriented as in Fig. 6 we have

Fig. 6. Generalized geometry to calculate small aperture
arrival angle correlation functions.

14
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oEl I oE o e by oy P [ o ] Py Prow—yg =

D¢ ()

> 2
sin
o Y

(7) B_(o) i;z'ﬁg(p) cos?y +

N =
r.\J

where

angle of arrival of interest

™
n

angle between interpair displacement
and pair separation.

<
n

For y = 0 and n/2 we have the expressions for Ba(p) and BB(p)
respectively.

The smallness criterion for the aperture size can now be
considered. Recall that it was assumed that the aperture size had
no effect on, the angle of arrival. From Egs. (Sf) and (6h) we see that
for Ds(p)a p¢, the angle of arrival correlation is indepenaent of o.
It is well known that for the Kolmogorov refractive index fluctuation
spectrum, D (p) has this form for p less than the turbulence inner
scale. Thus these results apply to apertures smaller than the inner
scale. For apertures larger than this, the large aperture method
should be used.

In this section the basic equations for small aperture angle of
arrival correlation functions have been derived. These expressions
will be used in sections V and VI.

Iv. LARGE APERTURE ANGLE OF ARRIVAL CALCULATIONS

In this section pertinent formulas for the large aperture angle
of arrival mean square value are derived and discussed. The linear
phase and constant amplitude assumptions made for the small aperture
angle of arrival calculations begin to break down as the aperture
becomes iarger than the inner scale. The phase front becomes more
distorted than can be accurately described with a linear wave tilt.
Secondly, amplitude distortions become significant. These problems
have been considered in part by various workers.

Two major approaches are used, both involving an extremum
technique. The first approach to define the instantaneous arrival
angle as the direction for which the instantaneous power is the
maximum. The second is to fit expression for the instantaneous wave-
front to a series of polynomial surfaces using a least squares fit.
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One of the polynomials is a flat plane, so that the normal to the
plane then is taken as the direction of the wave. Both approaches
give the same basic expressions for the instantaneous angle of arrival
direction. The derivations will now be outlined.

The first approach to be considered is that which uses the

direction of maximum instantaneous power to define angle of arrival[10].

The technique is to split the mathematical expression for the electro-
magnetic phase into two parts, one representing a plane wave and the
other representing the deviations from the plane wave. The direction
of the plane wave normal is chosen to maximize the expression for

the power. It is assumed that the deviations of the electromagnetic
phase from the plane wave value are small and that amplitude fluctu-
ations over the input aperture are neglegible. Thus, let the field
arriving at the receiving aperture be

gelo(r)

where r = (x,y) denotes the transverse position of the input aperture.
The term ¢(¥) is equivalent to S(x,y,z) in the previous section. Then
the component of the field in the direction with transverse spatial
frequency « is

(8) e(c) = [ dr Eei(¢(r) -k 1)

and the power in the same direction is

(9) P(R) = 3 |f dr gel(o(D) - - 1)
0

Following Heidbredder,[10] we define a(r) the phase difference from
a flat plane,

ar) = o(r) -« - ¥

Our first object is to find an expression for the value of k
for which P(k) will be maximum. We assume that the phase difference
A(¥) from that optimum value will be small. Then, rewriting Eq. (9),

16



2

(10a) P(R) = 7 |/ dF gel8(r)

0

: _ 2 _ Y
(10b) P(x) = 7 {f dr E COSA(F)} t {j dr E sinA(r)}

o | ()

s 12 2

(10c) é-‘—{jd?(l-g—)s} +L«{deAE}'

Z0 Z0

where the r dependence of A is implied. Differentiating Eq. (10c) with
respect to k, to find the optimum value we find

2
P = A = 3A ¢
(1a) 3§'°'2f""1(“2")”d"23.<x5
- — 3
+fd¥‘-l AE[dY‘z'a—K;E
(11b) ézde]E[sz (¢2-F-F2) sz

- [ T E [ dry Ex,.

The aperture is assumed to be symmetric so that the integrals over odd
powers of x and y are zero. Thus the integral in the second term and
the integral over XY 9 in the first term vanish. Solving for «_ then
gives X

N A0
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The mean value of cy is taken to be zero. This is based on the assump-
tion that the atmospheric turbulence is isotropic so that the mean
value of ¢(¥) is zero, i.e., fluctuations of phase are equally likely.

The variance of «, and the associated component of the angle
of arrival, a,

K
- X

are given by

<K2> fj d?ﬁ dFé E] E2 <¢(;H) ¢(Fé)> X1%o

X
2 2
k k2|j dF x2 E|

(18) <a§> -

Identifying the phase correlation function

Bs(rz'r]) = <¢(P]) ¢(r2)>

relating it to the phase structure function

. ] —
(15) Bs(rz'r]) = [Ds(m) - Ds(rz‘r])]
and again using the fact that the aperture is symmetric gives

2
2k2|j dr x2 E|

(16) <ai> =

Equation (16) is generally evaluated for circular apertures. To
obtain the appropriate expression for that case first define

18
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" [ 2 [

X-I = Y‘-I Ccos O-I X2 = Y‘z cos 92

so that the denominator of Eq. (16) is (taking the amplitude E to be
constant),

R 2« 4
(17) 2k2 J [ dry do 3 cos’e E| = 2% (xf- )2 €2,
00

The expression for the arrival angle variance is then

00

R 2 4
2
rf dr, de J I rgdr2d92E1E2 cos(e]-ez)Ds(Jrf+r2-2r1rzcos(ez-e1))
00

2
(18)<a’> = -
X 2k?  (+R%/4)2 g2

After further defining

-
§

= 0576,

he~d
n

1/2(92+e])

and performing the g integral, the result is,

R R m
dr r2 dr r2 dy cosy D (Jr2+r2-2r r, cosy)
"1 2 2 Y Y PsWhTT27e 2 Y
2 0 0 0
(19) <a.> = - -
19



Equation (19) will be used in the next section for numerical evaluations.

Heidbreder evaluates Eq. (10) with various symmetric aperture weighting
functions W(ry)W(ro) multiplying the phase structure function finding
relatively small cﬁanges for gaussian weighting functions with half-
widths the order of the radius. He also finds some small correlation
between the plane wave fluctuations of the phase front and the residual
phase for a one dimensional aperture (infinitesimal in the other
dimension).

The second approach, due to Fried,[9] in which the expression
for the instantaneous wavefront is fitted to a series of polynomials
will now be considered. The polynomials are similar to the Zernike
polynomials, orthogonal over a circular area. The first six are

2 2
F(R) = =L, Fp(m) = 4=X)
n e 4t [R6712
2 2
(20) Fo(r) ==X, Fg(F) = & - y7)
ey 676
FylP) = =L (M = =X

they are orthonormal so that

(21) [ dr W) F(T) Fo(F) = &
where

1 r <R
(22) W(r) = _

0 r>R
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The wavefront ¢(r) is then erpressed as an infinite series of
these polynomials:

o(r) = nZ] a, F (r).

The second and third polynomials represent the flat of the
wavefront. Thus the spatial frequency and arrival angle associated
with the flat componant are given by

(23a) a =

o El

= grad {a, F,y(r) + a, F3(F)}

:
R%/4

{a2 X+ a, y}

(x and y are unit vectors.) Further, the variance of the angle of
arrival in the x direction is

(24) wl> = — <a
X 4 2
mR°/4

The polynomial series is fitted to the wavefront at any instant
by choosing the coefficients so as to minimize the mean square
deviation between the series and the wavefront proper:

@) g [ FHD P - ] ey F(I = 0.

Squaring the term in the brackets, performing the indicated differenti-
ation, and solving for a, gives

(26) a, = [ dr W(F) o(7) F_(P).
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Equation (26) can be shown to be comparable with the expression
by Heidbreder. To do that, use the expression for Fo(¥) in Eq. (20)
to give ap in Eq. (26) and substitute into Eq. (24). After using
Eq. (15) to simplify, the result is

2. _ 1 - = = - Foord)
which coincides very nicely with Eq. (18).

Fried and Heidbreder both evaluate the angle of arrival variance
assuming that the wave structure function is approximated by the

phase striucture function, i.e., the range is sufficiently short that
amplitude effects are negligible:

(28) By(r) = 0, (r) = 6.88(1°""

where o is Fried's transverse coherence length given by

(29) r, = (6.88/2.91 kch§)3/5

The result is

(30a) <ui> 7.064/k2 r,>/3 0'/3

(30b) 1.026 x 6.88/k° r°5/3 p/3,

Equation (30b) agrees closely with the approximate expression
derived by Hufnagel[8] ?Eq. (3e)).

To account for amplitude effects the phase structure function
can be replaced with the wave structure function and the polynomial
series now has complex coefficients.[9] One drawback as explained
by Fried is that the results are difficult to interpret.
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Concluding, we see that the angle of arrival for a large
aperture depends on the phase structure function also. Thus, these
results are as general as the approximations used to calculate the
phase structure function. A specific phase structure function more
general than Eq. (28) will now be used to calculate extended numeric
results.

V. NUMERIC CALCULATIONS OF ANGLE OF ARRIVAL

In this section the general expressions given previously for
arrival angle mean square and correlation functions are evaluated.
The effects of such parameters as outer and inner scale, range and
type of wave are demonstrated for both large and small aperture cases.
The range of parameters covered is such as to give a reasonably complete
set of curves for comparison with experiments 10.6u performed at the
RADC Laser Propagation Range.

To proceed with the evaluation, we note that the angle of arrival
statistical functions in Eqs. (2c), (5f), and (6h) are all in terms of
the phase structure function. To evaluate these expressions an integral
form of Dg(p) is used,[5]

® 2
2
(31) Ds(p) = 41r2k2L J - JO(Kp)] IZI + ﬁsin EFLJ
0
. QN(K) k de
2
where k = :
o = separation
L = propagation range

three dimensional refractive index fluctuation

QN(K)
spectrum.

For a spherical wave, a similar expression was derived by Carlson
and Ishimaru.[16]
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o L , )2
(32) D (p) = 81k J [1 - J,(xe)] I{% cos (Ll )}
0 0 ’ N . .
oy (ﬁL) dn «dk.

Both of these expressions are the result of using the Rytov approxi-
mation and are valid where the Rytov approximation is valid. This
validity will be discussed later.

Both exprescions (31) and (32), use the refractive index
fluctuation spectrum ¢y(x). Several models for ¢y have been proposed
and these are discusseﬂ in Appendix A. For the calculations in this
report, the model used is

2, 2
-k /x
2 e m
(KZ + K02)11/6

(33) gy (x) = .033 C,

where Km = 5.92/20
24 = inner scale of the turbulence
Ko = 1/L0
L0 = outer scale of the turbulence. ‘

Using Eq. (31) in the expressions derived earlier in Egqs. (2c),
(5f), and (6h) we have for the small aperture angle of arrival ,
expressions

o« 2 |
(34) <a2> = sz I [T+ —%— sin EELJ K3 ¢N(K) dc :
B Kk L .
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L} _./H Hf H H‘ ) ~ -

bt pd bt bt —d =d et e —d e e e

e

> 2 J, (kp)
(35) By(p) = 0L [ 1+ ;%I--sm b 08 ) e
0
* 2
(36) B,(0) = 262 [ [0+ - sin 5H 9y (k0) o () e - By (o).
0

Similar expressions were also obtained by Strobehn.[17] The corre-
sponding equations for the spherical wave case can be found by making
the substitution

L
2 2
(37) Llil + ——g—L- sin -KTL—] oy (k) > 2 J ‘} cos (I—'il—z'ﬁ-:l'(—)]

kL
a §N (.f-\_-) dn

in Eqs. (34)-(36). These expressions are suitable for numeric
evaluation since ¢N(K) approaches zero rapidly for a finite value
of « so that the upper limit of the integrals can be made finite.

As noted in Appendix B, when the outer scale, L, becomes
infinite, Eq. (33) reduces to the Kolmogorov spectrum with inner
scale, g29,[5] and Eqs. (32) and (34)-(36) can be integrated ana-
lytically. Thus, defining

K 2L K. P

__m -
D= n and‘ g ) s

we have
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p 2 1335 fp(la.

+ p-V/6 |:cos 1—% Re {1F1(-g-,2,i%)} + sin 1-12'- Im 1F](-%,Z,i%)}]

0] - 2 13[1 o 14
(39) Bu(p) = BB(p) .226 L Cx Km '{6 1F1(6’3’ q)
+V”5EmT%m{fﬂam%%-cmT%m{ﬁﬂ%m%}]
(40) <a?> = g% =L %« 1/3 (904 +1.088 0716 cos 1)

For large p, the asymptotic forms are

(41) B,(o) % 2.43 L ch o173

(42) B, (o) % 1.62L ch ,~1/3,

The small aperture angle of arrival mean square and correlation
function were calculated for many cases. These will now be presented.
Equations (38), (39), and (40) were evaluated for several typical
values of range and inner scale. The results are shown in Figs. 7-34.
The parameters used were chosen to agree with those that might be
present at the RADC Laser Propagation Range. For example the ranges of
304.8 m, 914.4 m and 1524 m correspond respectively to 1000 ft, 3000 ft
and 5000 ft, all ranges used at the RADC Range.
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First the mean square angle of arrival is considered. Figures
7 and 8 show it as a function of range, first for two inner scales and
infinite outer scale as given in Eq. (40), and second for three different
outer scales taking the inner scale as 1 mm and numerically integrating
Eqs. (33) and (34). For simplicity the mean square is normalized to
the refractive index structure parameter, CNZ. It is noted that the
mean square increases as the outer scale increases and as the inner
scale decreases. In either case the range of turbulent spatial fre-
quencies interacting with the light beam has increased, thus increasing
the effect. Of the two scales the inner scale has the larger effect on
the arrival angle flucuations, because, while tke smailer scale eddies
are less prevalent, they scatter light at the greatest angles.

Typical angle of arrival correlation curves are shown in Figs.
9, 10, and 11, evaluated from Eqs. (34), (35), and (36). They show
the effect of inner scale on the correlaticn functjons. Figures
and 10 show the autocorrelation functions Ba(p)/<a2> and B.{p)/<a%>
for a range of 304.8 m, infinite outer scale and inner sca?es of 1 cm
and 1 mm. Figure 11 shows the left hand portion of Fi¢. 10 in detail
to display the fine structure of the initial roll-offs. The rapid
rol1-offs of the autocorrelations, as the separation is increased
slightly from zero, is evident. However, as the separation exceeds
the inner scale, the curves level off. The roll-off and break point
are strongly dependent on the inner scale.

The inner scale dependence car be explained. As noted earlier
for p < 245, the phase structure function obeys a square power law and
the correlations Bg(p) and B,(p) are equal tu the mean square angle of
arrival. From a pﬁysica] standpoint we note that the inner scale is
a characteristic dimension of the smallest blob in a turbulence cell.
Thus, we expect the angle of arrival correlation for o < &, to be nearly
the same as the mean square value. It is very likely, tha% the two
regions considered on the wavefront were perturbed by the same blob
or a closely correlated blob. As the separation is increased and
approaches the inner scale the number of blobs increases rapidly in
comparison to the increase in separation. However, as the separation
becomes sufficiently large the total number of blobs masks the increase

in blobs. Thus, the roll-off of the correlation slows down and levels
off.

The inner scale dependence can bhe derived from the expressions
used earlier. Since we are dealing with an inner scale phenomenon
the outer scale can be ignored and the analytic expressions are used.
Thus, for p << g, we have

B, (o)
(43) B =1 - 02064 %7

<B > '
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within a correction of D']/6 cos n/12. For p << g, we see that xp p
will be less than one and from Eq. (43), Bg(p) = <g%> as expected.

A comparison of the exact result and the approximate result is shown

in Figs. 11 and 12. Figure 11 shows both cases of 25 = 1 mm and 1 cm
and Fig. 12 is a magnified view of the case of 2, = 1 cm. The structure
function, DN(p)/CN , is also shown in Fig. 12. We see that the approxi-
mation given in Eq. (43) breaks dgwn around the point where Dy(p)
changes from a r¢ dependence to r /3 dependence as expected.

The information in Figs. 9, 10, and 11 is repeated in Figs. 13-16,
along with other curves to show the effect of varying the range. Instead
of plotting the curves on linear scale which has a rapid variation near
zero separation, the -urves are plotted on log-log paper. Also, instead
of plotting the autocorrelation which suppresses the range information,
the correlation function is plotted, normalized for convenience to the
turbulent structure parameter. The fact that the curves are identical
except for a vertical displacement indicates that the range information
is primarily in the mean square for infinite outer scale.

The effects of the outer scale obtained from computer evaluation
of Eqs. (33)-(36) are shown in Figs. 17-20. The azimuth and elevation
angle correlation are shown in Figs. 17 and 18 for a range of 304.8 m,
inner scale of 1 mm and three values of the outer scale. The information
is repeated in Figs. 19 and 20 as log-log plots of the two arrival angle
gogre]ation functions normalized to the turbulence structure parameter,

The effect of the outer scale_is shown quite dramatically. The
elevation angle of arrival, By(p)/<a> in Fig. 17 shows a slightly negative
correlation for p = L,. This negative correlation is sufficiently large
that it is not believed to be an artifact of the computation. Further
showing Ehe effect of outer scale, the azimuth angle of arrival correlation
BB(p)/<a > shown in Fig. 18 falls below 5% of the mean value for p = Lg.

The effects of range with a finite outer scale are shown in
Figs. 21 and 22 where we see the normalized correlation functions
plotted for an outer scale of 1 m, and inner scale of 1 mm and ranges
of 304.8 m ft, 914.4 m ft and 1524 m ft. Fiqures 23 and 24 contain the
same information except with an inner scale of 1 cm. It is noted that
in these cases the outer scale dependence is almost entirely determined
by the variation of the mean square arrival angle caused by the outer

scale. Thus, the correlation function is almost directly proportional
to range.

The preceeding graphs have all been for a plane wave. The
equivalent graphs are also presented for a spherical wave in Figs.
25-34. Thus Figs. 25 and 26 give the mean square arrival angle for
two outer scales for 1 mm and 1 cm inner scales respectively. Figures
27 and 28 give the normalized arrival angle correlation functions for
three ranges for an infinite outer scale and inner scale of 1 mm.
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Fig. 25. Small aperture mean square angle of arrival
for spherical wave input, finite outer scale
and two inner scales.
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Fig. 26. Small aperture mean square angle of arrival
for spherical wave input, infinite outer
scale, and two inner scales.
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Figures 29 and 30 give the same data except that the inner scale is

1 cm. Figures 31 and 32 give the normalized arrival angle correlations
for a 1 m outer scale and 1 mm inner scale for the three different
ranges and Figs. 33 and 34 hold for 1 m outer scale, 1 cm inner scale
and the three different ranges. These were all computed the same as the
plane wave data, except with Eq. (32) replacing (31).

The accuracy of the computer evaluations of Eqs. (33)-(36) was
checked by evaluating them for the case where L, = = and comparing with
the closed form analytic expressions in Eqs. (38)-(40). Several orders
of Gaussian quadrature integration were tried and compared to the
closed form results as shown in Fig. 35. We see that the 96-point
Gaussian quadrature integration used in the previous calculations provides
good agreement.

Extensive results are also available for the large aperture arrival
angle variance. Figures 36 and 37 are plots of ?ean square arrivél angle
normalized to turbulence structure parameter, Cy4, plotted as a function of
aperture radius. The numbers were obtained by numarically integrating
Eq. (19) with the expression in Eq. (33) used for oy(x). In Fig. 36
curves are shown for plane waves for an inner scale of 1 mm, a range of
304.8 m ft and three values of outer scale. Figure 37 shows the effect
of range for an outer scale of 1 m and an inner scale of 1 mm. These
curves show changes with outer scale and range similar to the smaill
aperture arrival angle correlation functions.

Verifying the accuracy for these results is much more difficult
and time consuming since four rumeric integrations are used. However,
increasing the order of integrations used yielded results which differed
in the third and higher order digits. Thus, these results are believed
to be accurate to 3 digits. Higher accuracy can be obtained by in-
creasing the Gaussian integration orders.

Further data is also available on large aperture mean square
arrival angle, because, to a very good degree of approximation, the
large aperture mean square arrival angle taken as a function of aperture
radius, is equal to the small aperture azimuth arrival angle correlation
function, By(p) taken as a function of point separation, p. This
synonymity is discussed in detail in the next section. However the results
are used here to indicate the further data on large aperture arrival .
angle mean square available. Thus the even numbered figures between : {
Fig. 14 and Fig. 24 can all be retitled to give large aperture mean
square angle of arrival versus radius for the particular case for i
plane waves, and the even numbered figures between Fig. 27 and Fig.
34 can all be retitled to give the mean square arrival angle versus
radius for the particular cases for spherical waves. Thus data is
available for a large number of cases for the large aperture situation
also. The discussion of the curves parallels that for the small aperture i
case.
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This concludes the presentation of data. Large and small aperture L
angle of arrival data predicting experimental results have been
calculated for a range of typical cases. The effects of range, inner
and outer scales, separation and aperture size have all been demonstrated.

Since all of the equations derived in this report are functions
of Dc(p), the validity of these results depends on the validity of
the Rytov approximation. This topic will now be briefly considered.
The question has been the subject of many discussions[18-26] and the
criterion which seems appropriate at this time to the calculations in
this report is Dg(p) << n. This result was reached by Tatarski from
calculations of the second order term of D¢(p).[18] A similar result
was also reached by DeWoif.[19] To quanti?y this result we consider
p much greater than 2, and set [5,(47.37)]

(44) D (o) = 2.92 C 2 2 53

L << 7.

N

For convenience, replace the "much less than =" with 7/10. Thus, we
can write Eq. (44) as

3/5
(45) o P IR R DI
i (29.2k ) N

This is shown plotted in Fig. 38.

In Fig. 38 several range, CNZL, combinations are shown. We see
that for the }ongest rangs gsed earlier, 1524 m and for strong
turbulence Cy¢ = 1014 p-e/ , the maximum permissible separation, p,
is approximately 9.2 cm. This means that the angle of arrival two-point
correlation is valid for p < 9.2 cm and the large aperture results are
valid for R < 9.2 cm. As the range and turbulence levels decrease we
note that the restrictions are relaxed.

It should also be noted that the form used for Ds(p) does not
include saturation effects due to the outer scale. Since the validity
criterion was derived independently of the exact form of the refractive
index fluctuations saturation effects may extend the region of validity. :
Furthermore, it has been suggested the region of validity may be larger
than calculated.[5],[27] Measurements by Bouricius and Clifford at |
.632u[27] suggest this result and indicate that more study is required. i,
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To summarize the work presented in this section, data were
presented predicting results of various angle of arrival experiments
for various conditions. First the formulae to be used for the phase
structure function and refractive index turbulence spectra were pre-
sentad. Then expressions given in previous sections for small aperture
arrival correlation functions were evaluated, and plotted. For
infinite outer scale the expressions could be written as closed form
expressions, for finite outer scale they had to be evaluated numerically.
Both elevation and azimuth angle correlation furictions, respectively
B.(p) and B.(p), were calculated and graphed for plane waves for ranges
304.8 m, 914.4 m and 1524 m, outer scales of infinity, 1 m and 0.159 m,
and inner scales of 0.001 m and 0.01 m. This data was then repeated
for spherical waves. The large aperture mean square arrival angle was
also evaluated from a previously presented formula. Only a few cases
were evaluated because of a synonymity which allowed the small aperture
azimuth arrival angle correlation curves as a function of sepaiation, o,
to be relabled with large aperture mean square arrival angle as a
function of aperture radius, R, thus allowing many of the results to
serve double duty. The section was concluded with a discussion of the
Rytov approximation on which the phase structure function was based.

VI. ANGLE OF ARRIVAL SYNONYMITY

This section deals explicitly with a relationship between the
angle of arrival variance for large aperture receiver as a function
of aperture radius, R, and the small aperture azimuth correlation
function, BB(p) taken as a function of p. The particular relationship

is that they are synonymous over a sizable range of values of the argument.

These two situations are shown in Fig. 39 to facilitate the comparison
between the two. Figure 39a shows a standard large aperture arrival
angle measurement situation. An atmosphericaily degraded beam from

a point source is focussed to a degraded spot. The information about
angle of arrival is obtained from the transverse motion of the spot,
the arrival angle being proportional to the spot displacement.

Figure 39b shows a possible situation for the measurement of small
aperture arrival angle correlation function. The angles of arrival

at two pinholes are determined independently by monitoring the two
pinhole diffraction patterns, the motion of the center of each pattern
being proportional to the individual arrival angle. In the case at
hand, only the x component of motion is of interest. The pinholes are
sufficiently small that the amplitude is constant over the hole. Then
the quantity of interest is the correlation of arrival angles between
these two pinholes, the correlation being a function of p, the separation
of the pinholes. In the case of interest the pinholes are separated in
the direction perpendicular to the direction in which the spot motion
is being monitored, (the x direction in Fig. 39).
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INCOMING ,
WAVEFRONTS
ANGLE OF
i ARRIVAL VARIATION
APERTURE IMAGE
WITH LENS PLANE
(a)
INCOMING

4 Vi
N ’@/‘\

P!NHOLES
P / DIFFRACTION

DIRECTION OF PATTERNS

MOTION OF
INTEREST /
/ — \

S

(b)

Fig. 39. Comparison of the definitions of the large aperture
mean square angle of arrival and the small aperture
angle of arrival correlation.
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Comparing Eqs. (46) and (47) we see that both expressions can be :
written in the form

(48) 41r2L f T(x) F(k) @N(K) K3 dc

where T(«) is the filter function peculiar to the particular operation, :
F(c) identifies the type of wave, and ¢y(x) is the refractive index ]
turbulence spectrum. Denoting the particular small and large aperture

filter functions by SA(kp) and LA(xR) respectively, we have

(49) SA(kp) = J;(kp)/xo
R R T .
(50) LA(R) = - (16/4R?) J r? dr J 0% do J cos v [1-9, (el r2p2-2rpcos v)1ar |
0 0 0

|

Equations (49) and (50) describe the manner in which the receiving
aperture interprets the angle of arrival. Graphs of these functions
are shown in Fig. 41. For convenience in comparison we shall take
them both to be functions of the same variable to be called R. We
see in this figure that the two filter functions are synonymous over
a wide range of «R.

[ N )
.- i

2]

The synonymity is limited with respect to the range of the variable
R over which it appiies. This occurs because of the relative size i
of the filter function and the other functions, F(k),%(k) x® in the
frequency integral. If the other functions are of significant size
only when the filter functions are almost identical, i.e., in the I
region, 0 <kR<4, then the identity will hold. If the other functions !
have large contributions for «R>4 then the synonymity will break down.

To more quantitatively define the regions of applicability for the
angle of arrival synonymity we define e€(R), the error between the two
functions relative to the small aperture correlation function,

f-—-e:p-_x.

BB(R) - <ax2>

(5]) e(R) = —__é_—(Ti)__
B

—
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The numerator of Eg. (51) is given by an integral, Ip(<R) of the .
difference between Eqs. (46) and (47{. Using the difference function
a(xR) given in Eq. (52) and shown in Fig. 42,

(52) A(kR) = SA(<R) - LA{kR)

the numerator integral is

(53) ID(KR) = 4w2L J A(kR) FS(K) ¢N(K) K3 dc.
(]

For a plane wave, Fg(«) garies between 1 and 2 and has little effect,
thus, making A(xR) and « ¢N(K) the two functions of most interest.

We now proceed to examine e¢(R) qualitatively, but in some detail
to determine the approximate functional dependence. This is fo be
done by examining the curves for SA(«R), LA(xR), a(xR), and «? on(x)
and the various ways they can combine for various values of R. #hese
curves are plotted quite precisely in Figs. 41, 42, and 43, using for
oy(x) the Von Karman spectrum given in Eq. (33). The various functions
are compared in Fig. 44 for several values of R. The effect of
choosing various values of R is to select particular horizontal scales
for the filter functions SA(xR), LA(cR) and A(xR). Thus, as seen
in Fig. 41, LA(«R) goes essentially to zero at « = 4.4/R and SA(«R)
has its first zero at « = 3.9/R. Fig. 42 shows that the difference
function, A(<R) has its first zero at « = 3.4/R, pretty much in the
same region. Examining curves in Fig. 44a and we see that for
R << 2o the small and large aperture filter functions are nearly
constant over the complete range of «3 ¢N(x) so that BBSR) and <ay(R)>
are identical, each being given by that integral over «3 gn(«). For
R=14.4/y,, comparing Figs. 44a and 44c, we see that both EA(KR) and
SA(cR) go to zero at about the same place that «° oyn(c) becomes very
small. For that case both curves are finite over the range 0-1/L,,
the product at any point being less than the value of either curve.
The integral over the product is then starting to decrease. This is
the region ot R where the curves of Bg(p) and <ax2(R)> start to
decrease, as shown on graphs of these functions. Further the value
of the error é A(kR) k> en(k) dc has been increasing with R
and has_possibly a local maximum because A(«R) has a negative portion
where «° ¢y(x) is still finite.

68

oo

L<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>